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Desertification threatens 70% of all dry lands worldwide by diminishing the provision of economic and ecosystem services. 
However, since long-term vegetation dynamics of semiarid ecosystems are difficult to study, the opportunities to evaluate 
desertification and degradation properly are limited. In this study, we tailored, calibrated and tested a spatially-explicit 
simulation model (DINVEG) to describe the long-term dynamics of dominant grass and shrub species in the semiarid 
Patagonian steppe. We used inverse techniques to identify parameterizations that yield model outputs in agreement with 
detailed field data, and we performed sensitivity analyses to reveal the main drivers of long-term vegetation dynamics. 
Whereas many parameterizations (10–45%) matched single field observations (e.g. grass and shrub cover, species-specific 
density, aboveground net primary production [ANPP]), only a few parameterizations (0.05%) yielded simultaneous match 
of all field observations. Sensitivity analysis pointed to demographic constraints for shrubs and grasses in the emergence 
and recruitment phase, respectively, which contributed to balanced shrub-grass abundances in the long run. Vegetation 
dynamics of simulations that matched all field observations were characterized by a stochastic equilibrium. The soil water 
content in the top layer (0–10 cm) during the emergence period was the strongest predictor of shrub densities and popula-
tion growth rates and of growth rates of grasses. Grasses controlled the shrub demography because of the resource overlap 
of grasses with juvenile shrubs (i.e. water content in the top layer). In agreement with field observations, ecosystem func-
tion buffered the strong variability in precipitation (a simulated CV in ANPP of 16% vs CV in precipitation of 33%). 
Our results show that seedling emergence and recruitment are critical processes for long-term vegetation dynamics in this 
steppe. The methods presented here could be widely applied when data for direct parameterization of individual-based 
models are lacking, but data corresponding to model outputs are available. Our modeling methodology can reduce the 
need for long-term data sets when answering questions regarding community dynamics.
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According to the United Nations (UNEP, Agenda 21), 
approximately 70% of all dry lands (representing a total  
area of 3.6 billion hectares, a quarter of the total land surface 
of the earth) is endangered by desertification. The prin
cipal causes are human land use activities and climatic vari-
ability in combination with complex ecosystem dynamics 
(Reynolds and Stafford Smith 2002, Reynolds et al. 2007).  
Replacement of grasses by woody plants (trees or shrubs)  
and changes in the spatial organization of arid rangelands 
have promoted major changes in biodiversity and ecosystem 
functioning (e.g. productivity, decomposition and carbon 
storage, nitrogen and water dynamics) (Schlesinger et  al. 
1990, Scholes and Archer 1997, Jackson et al. 2000), jeop-
ardizing the sustainability of animal husbandry (Sharp and 

Whittaker 2003). Therefore, understanding the processes 
governing coexistence of different life forms and emergence 
of spatial patterns is important for predicting how semi-
arid plant communities respond to land use (e.g. grazing)  
and climate change (Sankaran et  al. 2004, Tietjen and  
Jeltsch 2007).

However, understanding patterns and processes of  
vegetation dynamics in semiarid rangelands is an inherently 
difficult task due to several factors such as the mismatch 
in time scales between observation and vegetation change, 
the occurrence of complex event-driven dynamics, spatial 
heterogeneities, and non-equilibrium ecosystem dynam-
ics (Wiegand et  al. 1995, Jeltsch et  al. 2000, Briske et  al. 
2003, Peters and Havstad 2006). As a consequence, a purely 
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observational or experimental approach is often not feasible. 
One possibility to overcoming these limitations is the use  
of individual-based and spatially-explicit computer simula-
tion models (Wiegand et al. 1995). This approach provides 
understanding of arid rangeland dynamics by focusing 
on the processes and mechanisms that drive vegetation 
dynamics at the level of individual plants. Although there 
is little availability of long-term field data on full vegetation 
dynamics, short-term studies often provide data on seedling 
recruitment, plant growth, reproduction, seed dispersal,  
and plant–plant interactions. The basic approach is to incor-
porate the data on individual plant behavior in the form of 
simple rules into an individual-based model (IBM; Grimm 
and Railsback 2005) that simulates the fate and the inter-
actions of individual plants in a spatially-explicit context 
(within the community), the sum of which represents com-
munity dynamics (Wiegand et  al. 1995). This approach 
addresses one of the major challenges in ecology; under-
standing how processes at small scales determine patterns  
at large scales (Levin 1992).

However, data for direct parameterization of individual-
based models are usually not available for all parameters  
and there is often uncertainty in the formulation of mecha-
nisms and processes (Wiegand et al. 2003, 2004a, Grimm 
and Railsback 2005, Hartig et  al. 2011). One promising 
approach for model parameterization is to take advantage 
of the ability of individual-based models to generate outputs 
at larger scales such as community composition or average 
plant cover (called ‘patterns’; Wiegand et al. 2003, Grimm 
et al. 2005). The task then is to find model structures and 
parameterizations that generate (larger-scale) outputs con-
sistent with the corresponding field data (Wiegand et  al. 
2004a, Hartig et al. 2011). However, model fitting is quite 
challenging in the case of computationally-demanding  
models like IBMs (Wiegand et  al. 2003, DeAngelis and 
Mooij 2003, Grimm et  al. 2005, Martínez et  al. 2011). 
Additionally, there is no established approach that would 
parallel model selection for statistical models (Burnham and 
Anderson 2002; but see Wood 2010, Hartig et  al. 2011, 
Martínez et al. 2011).

To overcome these difficulties, we used inverse tech-
niques of pattern-oriented modeling (Wiegand et al. 2003, 
2004a, Grimm et  al. 2005, Kramer-Schadt et  al. 2007, 
Hartig et al. 2011) to fit a model to larger scale data. This 
approach required model simulations over the entire param-
eter space. Suitable parameterizations were detected by a 
multiple filtering mechanism that accepts parameterizations 
only if they yield simultaneous agreement with observed 
data in several outputs of the model and a model with  
severe structural errors will fail to yield agreement in some 
of the model outputs (Martínez et al. 2011). If the observed 
data provide sufficient information on system dynamics  
and the model shows no severe structural errors, the  
observed data constrain not only the model outputs but  
also the internal model functioning to produce reasonable 
behavior (Wiegand et al. 2004a). Under this assumption, we 
can study the internal model behavior to better understand 
the main processes governing the ecological system under 
study and use the model to make large-scale predictions.

In this study, we integrated the abundant field data on  
the population dynamics and spatial organization of the 

semiarid Patagonian grass-shrub steppe collected during  
the last 50 years into a spatially explicit and individual- 
based model. The vegetation model explicitly separates 
belowground and aboveground processes by including a 
previously developed soil water balance model (DINAQUA; 
Paruelo and Sala 1995). Soil water dynamics are the main 
limiting factor for the steppes. The ultimate goals of our 
model were to understand the role of different plant pro-
cesses on the long-term dynamics and spatial organization  
of vegetation in Patagonian grass–shrub steppes and to  
identify the most sensitive processes at the plant level that 
would allow us to detect degradation at early stages. How-
ever, before this could be accomplished we needed to 
parameterize and test the model against multiple field  
data. Therefore, we focused on three specific tasks. In the 
first step, we evaluated the ability of our model to gener-
ate dynamics in accordance with detailed field data and 
determined the values of unknown parameters using inverse 
parameterization techniques. In the second step, we per-
formed a global sensitivity analyses to identify the main  
controls of vegetation with special emphasis on the shrub-
grass balance. Finally, we characterized the emerging long-
term dynamics for simulations that agreed with the available 
field data.

Methods

Study area

The model was based on the semiarid grass-shrub steppe of 
the Occidental District of the Patagonian Phytogeographic 
Province (León et al. 1998). This vegetation district covers 
approximately 150 000 km2 between the SubAndean and 
the Central District of Patagonia. Most of the information 
included in our model was obtained from the INTA Rio 
Mayo Experimental Field Station and neighboring ranches 
in Chubut, southwestern Patagonia (45°41′S, 70°16′W, 
500 m a.s.l.), Argentina. The mean annual rainfall (MAP)  
at this site is 153 mm (n  37, 1961–1998), ranging  
between 47 and 230 mm (driest and wettest year on  
record, respectively), and mostly (ca 73%) falling during 
the autumn and winter (March to September; Jobbágy 
et al. 1995). Mean annual temperature is 8.4°C, with mean 
monthly temperature ranging between 2°C and 14°C, in 
July and January, respectively (Paruelo et al. 1998). Strong 
winds blow predominantly from west to east with high 
intensities. Soils have an upper sandy layer with 50% cob-
bles and pebbles, and a cement-like stony layer (i.e. CO3Ca)  
at 0.45–0.6 m depth (Calciorthids, Paruelo et al. 1988).

Almost 50% of soil cover is bare ground and the rest is 
covered by tussock grasses (26  5% SE), shrubs (12  4%),  
and litter (5%) (Golluscio et al. 1982, Fernández-Alduncin  
et  al. 1991). The dominant tussock grass species are Stipa  
speciosa, S. humilis and Poa ligularis, whereas Bromus pictus  
is a sub-dominant bunch grass species. The Stipa spp. species  
are generally less palatable and have higher C:N ratios  
than P. ligularis and B. pictus (Semmartin et al. 2004). The 
dominant shrub species are Mulinum spinosum, Senecio 
filaginoides and Adesmia volckmanni. Aboveground primary 
production ranges between 10 and 120 g m22 year21 
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(annual mean 56 g m22 year21; Jobbágy and Sala 2000).  
Grasses and shrubs account for 53% and 43% of total  
aboveground net primary production [ANPP], respectively, 
while a heterogeneous group of forbs account for the rest.

Model overview

We tailored an individual-based, spatially-explicit model 
(DINVEG) to simulate the vegetation dynamics of the  
grass-shrub steppe. DINVEG simulates the spatial and  
temporal dynamics of the dominant grasses Stipa spp.,  
P. ligularis, B. pictus and the dominant shrubs M. spinosum,  
S. filaginoides and A. volckmanni. These species cover the  
main functional roles present in the steppe and can be 
thought of as plant functional types. In the simulation of 
vegetation dynamics, most processes were conditioned by 
soil water, the main limiting resource in this plant commu-
nity. To describe the soil water dynamics, we integrated a 
previously developed soil water balance model (DINAQUA; 
Paruelo and Sala 1995) into DINVEG. To present  
DINVEG, we followed the standard ODD protocol for 
individual-based models suggested by Grimm et al. (2006). 
This protocol comprises three major blocks: overview,  
design concepts and details. In the following sections, we 
present the overview and design concepts. The details,  
rules and formulas used in the model are presented in the 
Supplementary material Appendix A1.

Purpose

The purpose of the modeling study was to understand the 
role of different plant processes on the long-term dynamics 
and spatial organization of vegetation in arid ecosystems.

Scales

We simulated a 50  50 m steppe plot with a spatial  
resolution of 0.2  0.2 m (cell size). One cell corresponded 
to the approximate size of one grass tuft, but shrubs could 
occupy several cells. We selected this resolution to ade-
quately represent the ecologically relevant processes (e.g. 
facilitation, competition, seed dispersal). In addition, the 
model simulated seven vertical layers and the seed soil bank. 
The first layer represented the aboveground occupation by 
shrubs or grasses, and six 0.1 m thick belowground layers 
contained the root occupation and water dynamics in the 
soil layers (i.e. 0–0.1 m, 0.1–0.2 m, 0.2–0.3 m, 0.3–0.4 m, 
0.4–0.5 m, 0.5–0.6 m). This is the relevant scale for the  
soil characteristics, water dynamics, and root systems  
for the Occidental Patagonian steppes (Paruelo et al. 1988, 
Paruelo and Sala 1995). DINVEG uses a monthly time  
step, whereas DINAQUA uses a daily time step (Paruelo and 
Sala 1995). Therefore, we integrated the daily information 
from DINAQUA to a monthly time step.

State variables

DINVEG comprises four types of objects: grass tufts,  
shrubs, the soil seed bank, and soil water. It simulates the 
spatial and temporal dynamics of the first three objects, 
whereas soil water dynamics were modeled by DINAQUA 

(see section ‘Links between the vegetation dynamic and 
water balance models’).

Grass tufts were characterized by an identity number, 
species (Stipa spp., P. ligularis or B. pictus), location (x, y 
coordinates), age, stage (i.e. seedling, adult, dead), above
ground plant biomass (g), and growth history (a record of 
individual growth during the last three years). According 
to sizes observed in the field, grass tufts occupy only one  
cell in the model. Shrubs were additionally characterized  
by size (number of cells), and the area immediately adja-
cent to the shrub in which shrubs may exert influence on  
grass seedlings (i.e. the grass ring or zone of influence)  
(Aguiar and Sala 1994). Based on observed shrub sizes,  
we allowed shrub size to vary between one and a maximum 
of 21 cells.

The soil seed bank records the number of viable seeds  
and seedlings per species for each cell. Soil water is estimated 
by DINAQUA for each cell at six different depths as the  
volumetric soil water content. DINAQUA considers the 
grass and shrub biomass within the nine cell quadrat around 
the focal cell, as well as monthly radiation, daily precipi-
tation and daily temperature data (see ‘Links between the  
vegetation dynamic and water balance models’).

Process overview and scheduling

For each individual, we simulated the main life history 
events of seed production, seed dispersal, plant growth, 
and mortality (Fig. 1). For non-occupied cells, we consid-
ered seedling emergence and recruitment, and for all cells in 
the grid we simulated the soil seed bank dynamics (Fig. 1). 
Each life history event occurred during particular months 
according to the schedule observed in the field. Because  
the Patagonian steppe is a water-limited ecosystem we 
assumed that the occurrence of the emergence and recruit-
ment events depended on water content in specific soil lay-
ers, and growth and seed production on plant transpiration 
(Fig. 1), both calculated by DINAQUA. Plant mortality 
was modeled with a species-specific annual mortality rate, 
which increased under water stress. Seed dispersal followed 
dispersal kernels parameterized from field data that consid-
ered the dominant wind direction. In the Supplementary 
material Appendix A1 (Model details), we provide a detailed 
description of the different rules and equations that govern 
the model dynamics in DINVEG.

Design concepts

Population and community dynamics emerge from the 
behavior of individual plants, and the life history of the 
different species is represented by the empirical rules set. 
DINVEG describes three types of interactions between 
individuals: belowground water competition, aerial facilita-
tion in the ring (i.e. shrub neighboring cells), and mortality 
of grass tufts in the ring if the shrub increases in size and 
overgrows grasses. The majority of model parameters were 
directly estimated from the literature or unpublished data 
(Supplementary material Appendix A1 Table A1). However, 
for uncertain parameters we used an inverse parameteriza-
tion approach (Wiegand et  al. 2003, 2004a, Hartig et  al. 
2011) based on data from several vegetation studies in the 
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Figure 1. Flow chart of the DINVEG model. The green boxes indicate the different individual stages. Diamonds represent decision  
processes and rectangles are alternatives processes. Black thin solid arrows represent demographic transitions, whereas pink thick arrows 
represent the main controls for each process. Soil water content and transpiration control population process such emergence, recruitment, 
plant growth, mortality and reproduction.

study area (see section ‘Model parameterization’). We also 
conducted a local sensitivity analysis of main output vari-
ables with respect to the model parameters.

Initialization

We constructed a 200-year rainfall and temperature time 
series by randomizing a record of 31 years of daily preci
pitation and temperature from the study area. A random-
ization procedure was used to simulate climatic series that 
considered the observed autocorrelation between years  
as autoregressive models and conserved mean values and 
inter-annual variability (i.e. MAP  153 mm year21 and a

coefficient of variation CV 
SD
X

100



 of 33%).

The DINVEG rules rely heavily on inputs from the  
soil water balance model DINAQUA such as soil water 
content of the ith soil layer (swci) or plant transpiration 
(transp) (Supplementary material Appendix A1 Table A1). 
However, direct coupling of DINAQUA and DINVEG  
by calling DINAQUA whenever a DINVEG rules requires 
an input would be computationally ineffective. We there-
fore used an alternative approach and generated a data bank  
that contained the monthly values of soil water content 
swci and plant transpiration transp for all DINAQUA input 
parameters (such as ANPP) that may occur for the selected 
climatic series in this steppe. Whenever a DINVEG rules 
required an input DINAQUA it looked it up from the 
data bank. The data bank was created for a given climate 
time series for an array of 10  10 classes of grass and shrub  
ANPP ranging between 0–90 g m22 year21 (with a width 
of 10 g m22 year21). These ANPP ranges are likely to occur 
in the Patagonian steppe (Jobbágy and Sala 2000). The 
transformation of the continuous ANPP values into the 

10 discrete classes caused a small approximation error. For 
example, under representative conditions the approxima-
tion error yielded approximately 7% for the output variable 
transpiration. The approximation error was calculated as  
the mean of the absolute differences between the estimated 
transpiration based on exact ANPP values and that based  
on the corresponding discrete ANPP values, taken over a 
biomass range representative for the Patagonian steppes. 
Then, this mean was expressed as percentage of the output 
model calculated with the exact inputs.

Input

The main input variables for DINVEG are provided by  
the soil water balance model DINAQUA that was devel-
oped and calibrated for the Patagonian steppe (Paruelo  
and Sala 1995). The DINAQUA input used to simulate  
the soil water dynamics were organized in three blocks:  
climate, vegetation and soil. Climate input variables refer  
to monthly radiation, daily precipitation and daily tem-
perature data which are provided by the climatic series.  
Vegetation input variables refer to ANPP of grasses and 
shrubs (simulated by DINVEG), root distribution in soil 
layers and transpiration parameters for each growth form 
(estimated for the steppe by Paruelo and Sala 1995). Soil 
input variables refer to the number of soil layers, their thick-
ness, water content at field capacity and water content at 
wilting point for each soil layer.

Links between the vegetation dynamic  
and water balance models

The vegetation model simulates the demographic processes in 
a cell using as input the soil water content and transpiration 
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at our study site in a non-spatial way and a set of ‘detailed’ 
summary statistics (i.e. cover of high-cover patches, shrub 
size structure, shrub aggregation, and grass-shrub asso-
ciations) that quantified detailed spatial patterns and size  
distributions of individual plants from the spatial organiza-
tion of vegetation as two-phase mosaics (Table 1).

The basic summary statistics are given by average  
values (e.g. shrub cover, density or ANPP; Table 1). Because 
these data are subject to observation error and stochastic 
variability within the study site, we defined the match of the 
basic summary statistics based on conservatively wide ranges 
given by the observed mean  2 SD (Table 1). The data were 
derived from field observations at ungrazed sites that repre-
sent the Occidental Patagonian steppes. This criterion works 
well if we assume that the system is near a stochastic equi-
librium. This assumption is reasonable for these Patagonian  
steppes (Aguiar et  al. 2005), but the presence of strong  
temporal trends (e.g. those induced by climate change) 
would complicate the inverse approach. For details on the 
acceptance ranges and field studies see Table 1. Details 
on the criteria for matching basic and detailed summary  
statistics are provided in the Supplementary material  
Appendix A2, while the spatial pattern analyses are explained 
in Supplementary material Appendix A3.

Model parameterization

The DINVEG model contained a total of 17 parameters for 
each species group (Supplementary material Appendix A1  
Table A2). The values of seven structural parameters for 
grasses (three species) and shrubs (three species) were esti-
mated directly from published data or measured in the  
field (Supplementary material Appendix A1), five para
meters have been indirectly determined from published or 
unpublished data, and five parameters that governed the  
life history events of emergence (te), recruitment (tr), growth 
(ttr), reproduction (ts), and mortality (pmk) were unknown 
and therefore varied over their entire range.

that corresponds to the ANPP of grasses and shrubs in 
an area of 3  3 cells [i.e. the kernel of a moving window 
(0.6  0.6 m)] around the focal cell. We used the 3  3 cell 
neighborhood because the cell size used in DINVEG is 
small in comparison to the area explored by roots. If the  
cell was vacant or occupied by a seedling, the processes  
simulated by DINVEG were emergence and recruitment and 
the DINAQUA-generated inputs were soil water content  
of the different layers. If the cell contained an established 
plant, the processes were growth, seed production and mor-
tality and the DINAQUA-generated inputs were transpira-
tion of each growth form.

Model evaluation

Our approach is an inverse modeling technique that identi-
fies (from a large systematic sample of the parameter space) 
those parameterizations that yield agreement between  
model outputs and corresponding field data (e.g. plant  
cover, species composition, spatial pattern) that are quan-
tified by summary statistics. This approach requires the 
following general steps: 1) the raw data is condensed into  
summary statistics to capture different characteristic fea-
tures of the steppe (Grimm et  al. 2005, Komuro et  al. 
2006, Csilléry et al. 2010, Hartig et al. 2011), 2) the match 
between the summary statistics calculated from simulated 
and observed data for a given parameterization and model 
are then quantified, 3) a given model must then be para
meterized, and 4) if alternative models are formulated, the 
candidate model(s) most likely given the data is selected 
(Wiegand et al. 2003, 2004a).

Summary statistics and their observed ranges

We used ‘basic’ summary statistics (i.e. plant cover and  
plant density at life-form and species level, and ANPP at life-
form level) that characterized the observed vegetation state 

Table 1. Criteria and acceptance range for field patterns fulfillment against model outputs.

Summary statistic Acceptance range Bibliographic sources

Basic summary statistics
Total cover 30–65% Aguiar et al. 2005, Fernández-Alduncin et al. 1991,  

Golluscio et al. 1982Grass cover 15–40%
Shrub cover 5–20%
Grass density 7–13 plants m22 Aguiar et al. 2005, Rotundo and Aguiar 2005,  

Oesterheld and Oyarzábal 2004Density of Bromus 2–6 plants m22

Density of Poa 2–4 plants m22

Density of Stipa spp. 4–6 plants m22

Shrub density 0.3–1 plants m22 Cipriotti and Aguiar 2005, Cipriotti and Aguiar 2010
Density of Mulinum 0.2–0.5 plants m22

Density of Senecio 0.1–0.4 plants m22

Density of Adesmia 0.05–0.3 plants m22

Grass ANPP 10–49 g m22 year21 Fernández-Alduncin et al. 1991, Jobbágy and  
Sala 2000Shrub ANPP 11.3–47.3 g m22 year21

Total ANPP 26.5–85.8 g m22 year21

Detailed summary statistics
Cover of high-cover patches 18–38% Cipriotti and Aguiar 2005, Soriano et al. 1994
Size-structure of shrubs no differences in the cumulative  

frequency distributions
Cipriotti and Aguiar 2010, Oñatibia et al. 2010

Shrub aggregation significant at 0.5–1 m Cipriotti and Aguiar 2010, Wiegand et al. 2006
Grass–shrub association significant at 0.1–0.7 m Cipriotti and Aguiar 2005, Wiegand et al. 2006
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and seed production because each threshold parameter  
triggered the occurrence of one key demographic event.  
Consequently, we can identify the more influential processes 
on long-term vegetation dynamics. We assumed that the  
most sensitive threshold parameter with respect to spe-
cies density will point to a demographic constraint. This is 
because in this case a slightly lower threshold value will allow 
for more frequent occurrence of the associated demographic 
process and if this process was indeed limiting then the  
density of the respective species should greatly increase if  
the parameter value decreases. This will be noted by a  
steeper slope (and correlation) in the relationship between 
the threshold parameter and species abundance.

Results

Inverse model parameterization

The probability that total shrub or grass cover (or total 
shrub and grass density) matched individually for a given 
model parameterization was relatively high (Table 2). For 
example, total grass or shrub cover matched in 34.4% and 
13.5% of all parameterizations, respectively. Total grass (or 
shrub) density matched in more than 40% of all parameter-
izations, whereas grass and shrub ANPP matched in 24% 
of all parameterizations. These results demonstrate that it 
was relatively easy for DINVEG to reproduce field data of 
single variables (but note that we used conservatively wide 
acceptance ranges).

Results show, in general, a strong inverse relationship 
between shrub and grass cover (and density) because high 
shrub density was associated with low grass density and  
vice versa (Fig. 2). While the two basic density summary 
statistics individually matched in more than 40% of all 
parameterizations, we found that only 12.8% of all para
meterizations simultaneously matched shrub and grass 
density (Fig. 2, Table 2). Finally, simultaneous match in  
all species specific densities was only reached by 0.22% of  
all parameterizations, and when requiring an additional 
match in ANPP, this figure was further reduced to 0.05% 
(i.e. 5 parameterizations; Table 2).

We used a hierarchical approach for estimation of the  
30 parameters that were unknown and demanded first that 
the set of basic summary statistics describing plant cover, 
density and ANPP (Table 1) were met. In a second step, 
we compared the model outputs generated by the para
meterizations that passed the criteria of the first step with  
the set of detailed summary statistics that were related with  
spatial structure. We can regard the first step as model  
fitting and the second step as validation because it uses  
independent data.

To estimate the values of the unknown parameters,  
we used an inverse approach similar to that described  
in Wiegand et  al. (2004a). We systematically sampled  
the entire parameter space using a Latin hypercube design 
(Stein 1987), a stratified sampling method without 
replacement. The Latin hypercube results in equal prob-
abilities for each parameter corresponding to uninforma-
tive priors in a Bayesian framework. For each unknown  
parameter, we selected an interval within which the para
meter was varied (i.e. lower and upper limits) and divided  
it into 10 equidistant subintervals. We generated a total of  
10 000 model parameterizations. Note that this approach 
estimates the unknown parameters conditionally on the cur-
rent knowledge of the other parameters (and the assumed 
model structure), assuming no uncertainty in their values. 
To test this assumption we also conducted model para
meterizations where all parameters were varied within their 
observed ranges and following their probability density 
function (when this information was available from biblio
graphy or field data), instead of being fixed to their most 
likely value.

For each parameterization a DINVEG simulation was 
run for 200 years. All simulations were initialized with  
the same vegetation plot that represented Patagonian grass-
shrub steppes in good condition (i.e. not degraded) under 
a typical climate series (i.e. MAP  153 mm year21; 
CV  33%). We then compared the mean of the summary 
statistics (i.e. calculated from the last 100 years and the  
whole plot) with the ranges calculated from the field obser-
vations and determined whether or not it was matched 
(Table 1). Only parameterizations for which the simulated 
data produced simultaneous match in all summary statistics 
were accepted.

Sensitivity analyses

We evaluated the sensitivity of the model at two levels of 
biological organization (growth-form and species) by calcu-
lating multiple backward stepwise regression analyses and 
Spearman rank correlation coefficients between a model 
output variable and a parameter. We studied the response 
in the average ANPP of grasses and shrubs, and grass, shrub 
and species-specific densities to changes in the four soil 
water content or transpiration thresholds te, tr, ttr and ts, and  
the mortality rate pmk. We conducted a global sensitivity 
analysis (Wiegand et al. 2004a) by using all 10 000 model 
parameterizations for the multiple regressions and correla-
tion analyses.

The sensitivity analyses allowed us to explore potential 
demographic constraints in emergence, recruitment, growth,  

Table 2. Summary of the inverse parameter estimation for DINVEG 
model based on the basic patterns. Numbers indicate the percent-
age of parameterizations for which the simulated output variables 
was within the observed field range.

Basic pattern Acceptance (%)

Total grass cover 34.3
Total shrub cover 13.5
Total grass and total shrub cover 12.8

Total grass density 43.2
Total shrub density 41.1
Total grass and total shrub density 12.8

Species specific grass densities 9.9
Species specific shrub densities 2.1
Species specific grass and shrub densities 0.22

ANPP 24.4
All basic patterns 0.05
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in the field (Cipriotti and Aguiar 2010). We also found that 
positive spatial associations between simulated grasses and 
shrubs occurred at short distances ( 0.7 m; Fig. 4d), as  
has been commonly reported for these grass-shrub steppes 
(Cipriotti and Aguiar 2005).

Although we had no long-term data on life form or  
species-specific densities to contrast against the model out-
puts, the inter-annual variability of the time series of plant 
species density and net productivity simulated by DINVEG 
was well within the envelopes (mean  2 SD) from field  
data of grazing-excluded plots (Fig. 5). Equilibrium condi-
tions were reached after approximately 25 years for all plant 
species in density and net productivity dynamics (Fig. 5).

Sensitivity analysis

Grass density was strongly correlated with the recruitment 
thresholds of the three grass species and weakly correlated 
with the emergence thresholds of Adesmia and Bromus  
(Table 3A). The correlation of grass density with grass 
recruitment thresholds was negative because a high recruit-
ment threshold means fewer opportunities for recruitment 
and hence less recruitment of grass seedlings. However, the 
correlation with emergence thresholds of shrubs were posi-
tive because higher thresholds mean lower shrub density 
and therefore higher grass density. Shrub density showed 
overall weaker correlations, but with more parameters, 
indicating more complex interactions. Total shrub density  
was negatively correlated with shrub emergence and recruit-
ment thresholds, and positively with the recruitment thresh-
olds of all three grasses (Table 3F). Total grass and shrub 
ANPP were correlated with recruitment and emergence 
threshold parameters, but additionally with maximum plant 
growth and growth threshold parameters (Table 3B, G). 
Regression analyses showed that shrub ANPP was poorly 
explained by model parameters (R2  0.39, p  0.001), 
whereas grass density, grass ANPP and shrub density were 
better explained (R2  0.8720.88, p  0.001). Finally, the 
slope values of the multiple regression analysis agreed well 
with the respective correlation coefficients. This indicates 
that a strong correlation between an output variable and a 
parameter translated in our case into a large sensitivity of the 
output variables to the demographic parameters (Table 3).

Model validation with detailed summary statistics

All five parameterizations of the model that matched  
the basic summary statistics also matched the detailed sum-
mary statistics. The mean aerial cover of high cover patches 
of the mosaic (i.e. shrubs surrounded by a dense grass ring) 
simulated by DINVEG (23%) was well within the 95%  
prediction envelope (18–38%) reported for ungrazed con-
ditions (Cipriotti and Aguiar 2005). In addition, the size 
structure based on shrub biomass simulated by DINVEG 
agreed well with the variation observed in the field (Fig. 3; 
Cipriotti and Aguiar 2010, Oñatibia et al. 2010).

The spatial patterns of the simulated vegetation at year 
200 (Fig. 4a, c) were also in good agreement with that 
observed on the steppe. Figure 4 shows an example for  
one simulation with a parameterization that matched all 
field data simultaneously. Shrubs showed an aggregation  
at short distances ( 1 m; Fig. 4b) similar to that observed 

Figure 2. Relationships between (a) shrub and grass cover and  
(b) shrub and grass density simulated by DINVEG during 200 years 
for the whole set of parameters used during the calibration. Dotted 
lines indicate the field abundance range for both growth-forms 
(mean  2SD) and the box the parameterizations with match in 
both patterns. Percentages indicate the relative number of simula-
tions fallen within the field range.
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function fitted to the field data.
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Figure 4. Summary of the spatial structure of the two-phase mosaic simulated by DINVEG after 200 years for the calibrated parameters 
and a typical climate series and a representative vegetation origin from the grass-shrub Patagonian steppe. Vegetation maps (50  50 m) for: 
(a) the two main life forms, and (c) the six dominant plant species. (b) Relative univariate O-ring statistic for the spatial aggregation  
of shrubs. (d) Relative bivariate O-ring statistic for the grass-shrub associations. Dashed lines indicate the simulation envelopes (95%) for 
CSR of shrubs (b) or the null model with CSR for grass tufts and fixed shrubs (d). Insets in panels ‘b’ and ‘d’ quantify the respective spatial 
patterns from field surveys.

As expected, threshold parameters of individual spe-
cies were the strongest determinants of its own density 
(Table 3C–E, H–J). Again, density of a given grass species 
correlated most strongly with its own recruitment thresh-
old (Table 3C–E), whereas the density of a given shrub  
species correlated strongly with its emergence threshold 
(Table 3H–J). Thus, the most important demographic con-
straint for grasses is the recruitment phase (Fig. 6a), whereas 
the most important demographic constraint for shrubs is 
emergence (Fig. 6b). However, for individual shrub species 
we found interspecific interactions with grass recruitment 
thresholds (Table 3H–J), whereas grass density was not 
strongly correlated with shrub parameters (Table 3C–E). 
For example, the abundances for all shrub species showed 
positive correlations with grass recruitment thresholds of  
Poa and Stipa species (0.21  rSP  0.27; p  0.001), indi-
cating that grass density controlled shrub density. Interest-
ingly, the other parameters governing mortality, growth and 
reproduction showed a generally low sensitivity to the model 
output variables analyzed (Table 3).

We assumed that uncertainty in the five parameters (per 
species) estimated from published or unpublished data can 
be neglected in a first approximation. To test this assump-
tion we conducted model simulation where we allowed these 
parameters to change within their observed ranges. We found 
that model predictions were generally in agreement with that 
of our main parameterization. The results of the sensitivity 
analysis identified emergence and recruitment parameters 
as the most influential parameters on response variables  
such as plant cover, density and ANPP (results not shown).

Dynamics of the Patagonian grass-shrub steppe

We used the data generated by the model simulations of  
the five parameterizations that produced a match of all 
summary statistics to explore the dynamics shown by the  
model. The dynamics can be characterized as a stochas-
tic equilibrium with considerable inter-annual variability.  
While the coefficient of variation of the input rainfall data 
was 33%, the variability of total shrub density was lower 
(CV  19%), and that of grass density was considerably 
lower (CV  9%). Variability in ANPP was somewhat 
between that of grasses and shrubs (CV  16%). Thus,  
ecosystem function buffered environmental fluctuations.

The simulated ANPP was moderately explained by a 
second order polynomial regression (Fig. 7) with the pre-
cipitation in the warm period of the current year and the 
total precipitation in the previous year as the main predic-
tors (r2  0.27, p  0.001). All second order terms in the 
regression analysis were significant, but the estimated effects 
differed in the sign of the coefficients. While the quadratic 
coefficient of the annual previous precipitation was negative, 
the quadratic coefficient of precipitation in the warm period 
was positive and one order of magnitude higher, pointing  
to differences in the slope changes.

Total grass and shrub densities for each simulation were 
highly correlated along years (r  0.69, p  0.001), point-
ing to a common driver. We explored the underlying reason 
for this high correlation by regressing the density (Nt) and 
population growth rates (i.e. Nt0

 2 Nt21
/t0 2 t21) for each 

focal species against the main environmental input variables 
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variables than Mulinum and Senecio (0.43  r  0.53, 
p  0.01) and the environmental controls were weaker and 
less significant in explaining plant density or population 
growth rate (r2  0.1–0.17, b  0.3, p  0.03).

For the three grass species, we found that the environ-
mental variables explained the population growth rate 
better (0.58  r2  0.68, p  0.01) than plant density 
(0.2  r2  0.35, p  0.01). Two strong environmental driv-
ers were common to the three grass species: the current soil 
water content in the top layer (0–10 cm) during the emer-
gence period (b  0.57–0.62, p  0.001) and the current  
soil water content in the intermediate layers (10–30 cm) 
during the recruitment period (b  0.2–0.36, p  0.001).

Discussion

In this study, we tackled a persistent problem in model 
parameterization in spatially-explicit and individual- 
based simulation modeling, which has hindered wider 
application of these types of models (Wiegand et al. 2004a, 
Grimm and Railsback 2005). Analysis of mechanistically- 
rich simulation models requires considerable effort  
(DeAngelis and Mooij 2003, Wiegand et al. 2003, Grimm 
and Railsback 2005). This is because the different mecha-
nisms are often governed by many model parameters  
(our six species model had a total of 17  6  102 para
meters), and even in systems that are well studied (as for 
example the Patagonian steppes), not all model para
meters can be directly determined from field data (12  6   
72 parameters were based on field data). Uncertainty in 
model parameters, error propagation, and lack of rigorous 
methods of model selection have been the major points  
of criticism against mechanistically-rich, individual-based 
and spatially-explicit simulation models (DeAngelis and 
Mooij 2003, Wiegand et al. 2004a, Grimm and Railsback 
2005, Martínez et al. 2011).

Our approach took advantage of the ability of individual-
based models to generate outputs at larger scales that can 
be compared with field observations (Grimm et al. 2005). 
In many applied problems, such as degradation in semiarid 
rangelands, there are usually not the time and resources  
available to conduct detailed field studies that would allow 
for direct parameterization of the model. However, larger 
scale data such as community composition and abundances 
are routinely collected. We demonstrated in this study that 
such data are a valuable source of information that can be 
used for inverse parameterization (see also Wiegand et  al. 
2004a) and assessment of long-term community dynamics.

The inverse pattern oriented approach presented here 
parallels recent developments in Approximate Bayesian 
computation (ABC) used especially in evolutionary genet-
ics (Csilléry et al. 2010, Hartig et al. 2011). Similar to our 
approach, ABC bypasses exact likelihood calculations by 
using summary statistics and simulations. Our approach of 
model fitting is analogous to the rejection filter approach, 
which is one of three major ABC algorithms for model 
fitting (Beaumont et  al. 2002, Hartig et  al. 2011). Model 
parameterizations are generated from a probability distri-
bution. The data generated by model simulation are then 
reduced to summary statistics, and the sampled parameters 
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Figure 5. Time series of (a) grass species density, (b) shrub species 
density, and (c) total annual net primary productivity (ANPP)  
simulated by DINVEG during 200 years for calibrated para
meters in a plot of 1/4 ha. Thin vertical bars indicate envelopes 
(mean  2 SD) for field species density data and ANPP of grazing 
excluded paddocks from Patagonia. Deviation from field data  
represents spatio-temporal variability.

(i.e. precipitation and the water content for different soil  
layers) for the current and previous years (t0, t 2 1 or  
t 2 2), considering two main seasons (i.e. cold [emergence] 
or warm [recruitment] season). Generally, the environmen-
tal variables that were significantly related to plant density 
(or population growth rate) were different among grass and 
shrub species.

For the shrub species Mulinum and Senecio, the strongest 
control of plant density and population growth rate was 
the current soil water content in the top layer (0–10 cm) 
during the emergence period (r2  0.3–0.42, b  0.47–0.5, 
p  0.001). This also explained the synchronous short-term 
fluctuations between both species (r  0.89, p  0.001;  
Fig. 5b). However, the density and population growth rate of  
Adesmia showed weaker correlations with environmental  
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Table 3. Spearman rank correlation (rSP) and slope (b1) coefficients between model parameters and growth-form or species density and ANPP 
calculated for all 10 000 parameterizations of the DINVEG model. Shown are the largest slopes and correlations for each species and  
growth form (p  0.001) in descending order.

Prediction Parameters rSP b1

(A) Total grass density Stipa recruitment threshold 20.44 20.43
Poa recruitment threshold 20.44 20.42
Bromus recruitment threshold 20.39 20.4
Adesmia emergence threshold 0.25 0.23
Mulinum emergence threshold 0.19 0.21

(B) Total grass ANPP Poa recruitment threshold 20.36 20.35
Stipa recruitment threshold 20.36 20.36
Bromus recruitment threshold 20.34 20.33
Mulinum emergence threshold 0.27 0.28
Poa max plant growth 0.21 0.19
Stipa max plant growth 0.19 0.19

(C) Mean Bromus density Bromus recruitment threshold 20.84 20.81
Bromus emergence threshold 20.31 20.33
Bromus mortality rate 20.25 20.26

(D) Mean Poa density Poa recruitment threshold 20.85 20.82
Poa emergence threshold 20.32 20.34
Poa mortality rate 20.19 20.2

(E) Mean Stipa density Stipa recruitment threshold 20.85 20.81
Stipa emergence threshold 20.33 20.33
Stipa mortality rate 20.19 20.19

(F) Total shrub density Adesmia emergence threshold 20.35 20.32
Stipa recruitment threshold 0.34 0.32
Mulinum emergence threshold 20.3 20.31
Poa recruitment threshold 0.33 0.3
Bromus recruitment threshold 0.28 0.29
Senecio emergence threshold 20.28 20.28
Mulinum recruitment threshold 20.24 20.25
Senecio recruitment threshold 20.23 20.23
Adesmia recruitment threshold 20.22 20.22

(G) Total shrub ANPP Mulinum emergence threshold 20.25 20.28
Mulinum growth threshold 20.21 20.25
Mulinum recruitment threshold 20.19 20.22
Senecio growth threshold 20.16 20.17
Senecio emergence threshold 20.17 20.16
Stipa recruitment threshold 0.17 0.16
Poa recruitment threshold 0.15 0.16
Mulinum mortality rate 20.12 20.14

(H) Mean Mulinum density Mulinum emergence threshold 20.68 20.66
Mulinum recruitment threshold 20.47 20.5
Mulinum mortality rate 20.21 20.22
Stipa recruitment threshold 0.21 0.21
Poa recruitment threshold 0.23 0.2

(I) Mean Adesmia density Adesmia emergence threshold 20.67 20.64
Adesmia recruitment threshold 20.4 20.41
Adesmia mortality rate 20.25 20.26
Stipa recruitment threshold 0.27 0.25
Poa recruitment threshold 0.25 0.23
Bromus recruitment threshold 0.22 0.21

(J) Mean Senecio density Senecio emergence threshold 20.7 20.66
Senecio recruitment threshold 20.5 20.5
Stipa recruitment threshold 0.22 0.22
Poa recruitment threshold 0.22 0.21
Bromus recruitment threshold 0.18 0.2

are accepted or rejected on the basis of the distance between 
the simulated and the observed summary statistics. The  
subsample of accepted values contains the fitted parameter 
values, and allows evaluation of the uncertainty in para
meters given the observed statistics (Csilléry et  al. 2010)  
and prior field data included in the model structure and 
parameterization.

However, in contrast to the rejection approach in ABC, 
we converted the distance between the simulated and the 
observed summary statistics into a binary measure of model 
fit for each summary statistic. Binary measures of model  
fit have also been advocated by others (Reynolds and  
Ford 1999, Komuro et  al. 2006). The reason for using  
binary measures is that observations are subject to errors 
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that produced model outputs that were clearly unrealistic.  
However, all summary statistics taken together consider-
ably constrained the parameter space and model behavior  
(see also Wiegand et al. 2004a for a detailed discussion of 
this issue).

Clearly, a valid parameterization had to balance the dif-
ferent demographic processes correctly to yield the observed  
ANPP, species-specific cover and densities. Only few para
meterizations were able to do so. However, the fact that  
our model was able to match multiple field observations 
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Figure 6. Annual population growth of grasses (a) and shrubs (b) related to the average soil water content during the recruitment phase 
(October–December) in the first two soil layers (0–20 cm) and the emergence phase (July–September) in the top soil layer (0–10 cm), 
respectively. Both data were built from a 200 year simulation with calibrated parameters. Dashed lines indicate the lower and upper limits 
of 95% confidence envelopes from the respective fits.

Figure 7. Polynomial relationship between the total ANPP simulated by DINVEG with the calibrated parameters and the current  
precipitation during the warm period (Pw) and the immediate previous annual precipitation (Pt21) for a representative initial vegetation 
condition and a typical climate series. The 2nd order polynomial function is ANPP  17.24  0.42 Pt21  0.16 Pw 2 0.0008 Pt21

2   
0.0025 Pw

2 2 0.0017 Pt21 Pw (r2  0.27, p  0.001). Circles are the simulated data by DINVEG.

and inherent stochasticity that needs to be considered.  
Our approach would be able, in theory, to minimize the  
distance between the simulated and the observed summary 
statistics, but differentiating parameterizations with dis-
tances below the level of uncertainty does not seem neces-
sary. Doing so may cause bias or overfitting (Wiegand et al. 
2003, 2004a, Latombe et al. 2011). In our study we used 
conservative, wide acceptance ranges for the summary  
statistics. With this, we aimed to exclude, based on each 
individual summary statistics, only model parameterizations  
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grounded in different modeling philosophies and assump-
tions. The matrix is usually deterministic (i.e. no changes 
of transitions or fecundities with time) and density- 
independent (i.e. the transitions or fecundities do not  
depend on plant density). However, our model allowed tran-
sitions among plant stages to change in response to annual 
rainfall (which introduced a considerable stochasticity typical 
for event-driven semiarid systems) and intra- and inter- 
specific interactions (e.g. water competition, aerial facilita-
tion or space competition) were density-dependent.

Interestingly, grasses controlled the shrub demography. 
This result is probably caused by water competition in the 
upper soil layers exerted by grasses (especially adults) on  
the early life stages of shrubs (e.g. seedlings or recruiters). 
The first two years after their emergence, the roots of shrubs 
are constrained to the upper soil layers (0–10, 10–20 or  
20–30 cm depending on time since emergence) and share 
water resources with grasses (i.e. rules no. 2, 3 and 6 from 
Supplementary material Appendix A1). This temporal 
resource overlap between shrubs and grasses generates an 
effective control for shrubs. Because the soil water content 
during emergence and recruitment is the key demographic 
process for grasses, they are mostly self-controlled (i.e. the 
higher water efficient species) and spatial competition with 
shrubs can be neglected, except for M. spinosum where it 
plays only a minor role (see rule no. 7 from Supplementary 
material Appendix A1).

The dynamic aspects of ecosystem functioning simulated 
by DINVEG were in good agreement with field observa-
tions from these Patagonian steppes. For example, the inter-
annual variability of total ANPP simulated by DINVEG 
(CV  16%) was within the range estimated for our study 
site (15–27%). This result confirms results from a field study 
by Paruelo et al. (2000) that suggested that biotic constrains 
in ecosystem functioning buffer the high environmental 
variability in rainfall (i.e. CV  33%). The moderate pre-
dictive power of the relationships between simulated ANPP  
and annual or seasonal rainfall (r2  0.2–0.4, p  0.01) 
were also in agreement with field studies and point to biotic  
constrains on ANPP that contribute to differences between 
the spatial and temporal models of ANPP (Lauenroth and 
Sala 1992, Yahdjian and Sala 2006). In addition, the time 
lags of ANPP responses agree with memory effects reported 
in semiarid grasslands (Oesterheld et  al. 2001, Wiegand  
et  al. 2004b, Bartelt-Ryser et  al. 2005) and/or the slow 
dynamics of water drainage and the shrub responses related 
to this water source (Golluscio et al. 1998, Jobbágy and Sala 
2000, Paruelo et al. 2000).

Conclusions

We showed that inverse parameterization of individual-
based and spatially-explicit simulation models allows for  
an integration of short-term data on individual plant behav-
ior with larger scale patterns that are routinely collected.  
Our approach allowed us to identify the key ecological  
processes that control long-term vegetation dynamics and 
to ‘reconstruct’ important characteristics of long-term com-
munity dynamics. For the Patagonian steppes, seedling 
emergence and recruitment are critical processes for long-
term vegetation dynamics. While sheep grazing is known to 

is important because it shows that the model structure is 
consistent with the current data on the Patagonian steppe. 
In contrast, a model with missing or incorrectly specified 
mechanisms would fail to match some of the observed data 
(Martínez et  al. 2011) and subsequent modeling cycles 
are required to identify the missing or incorrectly speci-
fied mechanisms (Wiegand et  al. 2003). The weak impact 
of the variability of ‘fixed’ parameters on model results can 
be explained by the narrow ranges of the ‘fixed’ parameters 
compared to the unknown parameters that were varied over  
their entire range. In addition, this type of inverse para
meterization is not prone to error propagation (Wiegand 
et  al. 2003). This could also contribute to the reduced  
impact of ‘fixed’ parameters on model results.

The detailed summary statistics evaluate aspects of spa-
tial structure that are substantially different from the com-
positional features tested by the basic summary statistics. 
We asked if the basic summary statistics were already able 
to constrain the model behavior sufficiently to generate 
spatial structures that match the corresponding field obser-
vations. Interestingly, we found that model parameteriza-
tions that matched the basic summary statistics (Table 1) 
generated the observed two-phase mosaic pattern where 
high-cover patches (co-dominated by shrubs surrounded by 
a dense grass ring) are interspersed in a low cover and grass-
dominated matrix (Cipriotti and Aguiar 2005). This con-
frontation of the fitted model with detailed data on spatial 
structure can be regarded as model validation. Thus, given 
that the overall model structure does not contain severe 
structural errors, routinely collected compositional data can 
provided sufficient information to constrain the internal 
model behavior in a way that even subtle spatial patterns 
were correctly predicted.

Dynamics of the Patagonian grass-shrub steppe

Our sensitivity analyses considered ‘fast’ variables such as 
plant density as well as a ‘slow’ variables (e.g. cover). The 
results for grass and shrub ANPP and density agreed with 
previous long-term field studies on woody or perennial 
grass species from semi-arid ecosystems (Milton 1995,  
Watson et  al. 1997, Fair et  al. 1999) where regeneration  
(i.e. emergence and recruitment) was the most important 
demographic process for the maintenance of plant popula-
tions. Interestingly, recruitment and emergence parameters 
were significantly correlated with slow and fast variables 
(Table 3). Thus, the shrub-grass balance and long-term veg-
etation dynamics can be strongly modified by environmental 
variables that affect recruitment and emergence. We found 
that the soil water content in the upper (0–10 cm) and 
intermediate soil layers (10–30 cm) at the end of the grow-
ing season was especially important for this, given that seed 
availability is not constrained (Aguiar et al. 1992, Rotundo 
and Aguiar 2005, Cipriotti et al. 2008).

Our finding that recruitment and emergence parameters 
were the most sensitive parameters with respect to long-
term population growth rates contrasts with results typically 
derived from matrix models for woody species where the  
stasis (i.e. survival) is generally the most sensitive demo-
graphic parameter (Silvertown et  al. 1993, Franco and  
Silvertown 2004). The reason for this difference may be 
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tion change and their treatment in models. – Ecol. Appl. 10: 
470–483.

Jeltsch, F. et  al. 2000. Ecological buffering mechanisms in  
savannas: a unifying theory of long-term tree-grass coexistence. 
– Plant Ecol. 161: 161–171.

Jobbágy, E. and Sala, O. E. 2000. Controls of grass and shrub 
aboveground production in the Patagonian steppe. – Ecol. 
Appl. 10: 541–549.

Jobbágy, E. G. et al. 1995. Estimación del régimen de precipitación 
a partir de la distancia a la cordillera en el noroeste de la  
Patagonia. – Ecol. Austral 5: 47–53.

Komuro, R. et  al. 2006. The use of multi-criteria assessment  
in developing a process model. – Ecol. Modell. 197:  
320–330.

Kramer-Schadt, J. et al. 2007. Patterns for parameters in simulation 
models. – Ecol. Modell. 204: 553–556.

Latombe, G. et al. 2011. Levels of emergence in individual based 
models: coping with scarcity of data and pattern redundancy. 
– Ecol. Modell. 222: 1557–1568.

Lauenroth, W. K. and Sala, O. E. 1992. Long-term forage pro
duction of North American shortgrass steppe. – Ecol. Appl.  
4: 397–403.
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influence these processes, our study shows that the predicted 
increase of dry years (Gian-Reto et  al. 2002) is likely to  
play an increasing role in controlling emergence and  
recruitment of both grass and shrub species (Cipriotti and 
Aguiar 2010).
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